Tamper Evident Microprocessors

Adam Waksman Simha Sethumadhavan
Department of Computer Science Department of Computer Science
Columbia University Columbia University
New York, USA New York, USA
waksman@cs.columbia.edu simha@cs.columbia.edu

Abstract—Most security mechanisms proposed to date unques- A suf ciently motivated adversary could introduce backd®o
tioningly place trust in microprocessor hardware. This trust, during hardware design. For instance, a hardware desigyer,
however, is misplaced and dangerous because MICIOProcessorghanging only a few lines of Verilog code, can easily modify
are vulnerable to insider attacks that can catastrophically com-
promise security, integrity and privacy of computer systems. In an on-chip memory_system_to send data_l |.tems It receives to
this paper, we describe several methods to strengthen the fuad @ Shadow address in addition to the original address. Such
mental assumption about trust in microprocessors. By employing backdoors can be used in attacking con dentialéyg., by
practical, lightweight attack detectors within a microprocessor, ex Itrating sensitive information, integritye.g., by disabling
we show that it is possible to protect against malicious logic gecyrity checks such as memory protection, and availgbilit
embedded in microprocessor hardware.) .

We propose and evaluate two area-ef cient hardware methods e.g.,by Sh.uttlng down the Com_ponent based on a timer or an
— TRUSTNET and DATAWATCH — that detect attacks on e€xternal signal. Some recent high-pro le attacks have tmen
microprocessor hardware by knowledgeable, malicious insiders. tributed to untrustworthy microprocessofd]; hardware trust
Our mechanisms leverage the fact that multiple components ijssues have been a concern for a while now in several domains,

within a microprocessor (e.g., fetch, decode pipeline stage etc.) jnciyding in military and public safety equipmer®7], and this
must necessarily coordinate and communicate to execute even.

simple instructions, and that any attack on a microprocessor issue has attracted media attention Igtéllkj].[_
must cause erroneous communications between microarchitec- Be_cause hardwz_ire components (including backdoors) are
tural subcomponents used to build a processor. A key aspect of architecturally positioned at the lowest layer of a computa

our solution is that TRUSTNET and DATAWATCH are themselves tional device, it is very dif cult to detect attacks launcher
highly resilient to corruption. We demonstrate that under realistic 5cgisted by those components: it is theoretically imptessib

assumptions, our solutions can protect pipelines and on-chipt d t a higher | t th ratin tem or
cache hierarchies at negligible area cost and with no performance 0 00 so at a higher layee.g., al the operating system o

impact. Combining TRUSTNET and DATAWATCH with prior ~ a@pplication, and there is little functionality availabtegurrent
work on fault detection has the potential to provide complete processors and motherboards to detect such misbehavier. Th

coverage against a large class of microprocessor attacks. state of practice is to ensure that hardware comes from a
Index Terms—hardware security, backdoors, microprocessors, trysted source and is maintained by trusted personnel — a
security based on causal structure and division of work. virtual impossibility given the current design and manufac
turing realities. In fact, our inability to catch accidenbags
with traditional design and veri cation procedures, even i
One of the key challenges in trustworthy computing iRigh-volume processorssg], makes it unlikely that hidden
establishing trust in the microprocessors that underlle #&ackdoors will be caught using the same procedures, as this
modern IT. The root of trust in all software systems rests an even more challenging task.
on microprocessors because all software is executed by an this paper we investigate how microprocessor trust can
microprocessor. If the microprocessor cannot be trusted, be strengthened when manufactured via an untrusted design
security guarantees can be provided by the system. Providiow. Figure 1 shows the standard steps used to manufacture
trust in microprocessors, however, is becoming incre&singnicroprocessors. This paper focuses on one of the initial
dif cult because of economic, technological and social-fagroduction steps, which is the coding phase of hardwargdesi
tors. Increasing use of third-party “soft” intellectualoperty (register transfer level, or RTL). Any backdoor introduced
components, the global scope of the chip design procedsring the initial phase becomes progressively more dif cu
increasing processor design complexity and integratibe, tto catch as it percolates through optimizations and tootaén
growing size of processor design teams and the dependence

i) 5 . Lo .
on a relatively small number of designers for a sub-compgnen °'t should be noted, however, that in practice it may be possivldetect
y 9 PO (r:|1|screpanC|es in the state of the system, such as cache n8ss#sdetection

all make hardware h|gh|y susceptlble to malicious des'ggannot be guaranteed, and it largely depends on both ektartigacts
used for the detectione(g., a reference time source) and on sub-optimal
1Appears inProceedings of the 31st IEEE Symposium on Security 8nplementation of the backdoor.
Privacy (Oakland), May 2010 3The International Technology Roadmap for Semiconductorssnibiat the
Free to distribute for educational use. Copyright resoicd may apply number of bugs escaping traditional audit procedures wiiteéase from ve
otherwise. to nine per 100,000 lines of code in the coming ye&is [

I. INTRODUCTION

-%)./)"1012+"34"3+5$$3"0(5$26.07"3+5/#"5

E3

901241, | | 3%, | [BI7+S L3N, | (S,
34406.%, 41%5'(%)*, 81)901#241:, | | =>2%$(%)*,

"#$%&%% (%) 1 > 381)7@#Y,

I'#$%&' %0-1080)%)%+, %I1*+*,+2%/0,'1$$"2%#-2*"+*1% I"#$"%&S$" (%)*+*,+#$-%$.%/0,'1$$"2%#-2*"+*1%/3"
13%A405# #$62%,CHD% 1*2#E-*"2%F-$%D"#$"%2$56+#$-G 405#,#$62%.$6-1"#*2%789:%8;:9%8<:9%9=:%=>:%"7

Fig. 1. Microprocessor design ow and scope of this paper.

later phases. Prior work on detecting attacks on hardware duytput of the cache will be able to tell that tampering has

malicious foundries 12][17][16][24][40][53][67] assumes as happened along the way.

a starting point the availability of a trusted RTL model,ledl Our method relies on the fact that cooperating units are

a golden netlist. Our work aims to provide this trusted, gald not simultaneously lying — a reasonable assumption because
netlist. high-level design engineers on a microprocessor projext ar

The traditional approach to building trustworthy systemiypically responsible for only one or few processor unit$ bu
from untrustworthy components is to redundantly perform rot all [26, 46]. Using these relationships, our system, called
computation on several untrustworthy components and UBRUSTNET, is able to provide resilience against attacks to any
voting to detect faulty behavior. For exampld, processors oneunit, even if that unit is a part afrusTNEeT itself. Further,
designed by different designers can run the same instng;tioTRUSTNET does not require that any speci ¢ unit is trusted. A
and the most popular output can be accepted. This solutiggcond system, callediataWaTtcH, watches select data on the
however, is not viable for microprocessors because it asge Cchip in order to protect against attacks that alter dataeglu
the initial design cost signi cantly by increasing the siaé Wwithout directly changing the number of outputs. Contirguin
the design team and veri cation complexity of the desigren the previous analogy, this would be a case where Bob,
This solution also increases the recurring operationaisdog the evil accountant, passed on the full $100, but passed on
decreasing performance and increasing power consumptigi@nadian dollars instead of American dollars, keeping the
In this paper, we describe a novel method for building @ifference for himself. WherbatawarcH is active, Chris'
trustworthy microprocessor (at low cost) from untrustedsga tweet would contain the fact that he donated American dgllar
without the duplication required by the version model. tipping off Alice about Bob's crime.

Our technique exploits the standard division of work be- In this paper, we evaluate the resiliency DRUSTNET
tween different sub-components (or units) within a micospr @hd DATAWATCH against a set of attacks implementable in
cessor, universally available in microprocessor desigis. RTL during the initial processor design steps. We show that
do this by recognizing simple relationships that must hoiIRUSTNET and DATAWATCH protect the pipeline and cache
between on-chip units. The underlying observation thatedri memory systems for a microprocessor closely matching the
our technique is that the execution of any instruction in ®un Microsystems’ OpenSPARC T2 processor against a large
microprocessor consists of a series of separate but tigh@hass of attacks at the cost of negligible storage (less2Hin
coupled microarchitectural events. For example, a memd¥§' core) and no performance loss. AdditionalfgusTNET
instruction, in addition to using a cache unit needs to use tANdDATAWATCH, in concert with pre-existing solutions (partial
fetch, decode and register units. We take advantage of tHigPlication P5]), can provide coverage against many known
cooperation in order to detect tampering by noticing that ffardware design level backdoors.
one unit misbehaves, the entire chain of events is altered. N summary, the primary contributions of this paper are:

We explain our technique with an analogy: say, Alice, Bob We present a taxonomy describing the attack space for
and Chris are involved in a fund raiser. Alice is the Chighicroprocessor designs. The key observation that forms the
Financial Of cer, Chris is a donor, and Bob is a maliciou$asis of this taxonomy is that a microprocessor attack cgn on
accountant. Let us say Chris makes a donation of $100 towafd@nge the number of instructions or corrupt instructions.
the fund-raiser and makes the payment to Bob. Let us als&\Ve present a novel, general solution that exploits the idinis
say Alice follows all probable donors on Twitter so that shef work and causal structure of events inherent in micropro-
can send a thank you note as soon as donors post twestssors for detecting a large class of attacks createdgdurin
on their charitable deeds. Chris tweets: “Donated $100 tioe initial stages of microprocessor design by knowledigeab
charity.” Malicious Bob swipes $10 off and reports to Alicevenal, malicious insiders. To the best of our knowledge, kee a
that Chris only donated $90. Of course, Alice catches Bdbe rst to propose using violation of co-operation invanis
because she can predict Bob's output based on Bob's infita microprocessors to detect malicious attacks.
from Chris. Applying this analogy to our microprocessor, a The rest of the paper is organized as follows: Section
malicious cache unit cannot send two outputs when in fadéscribes related work. Sectidih describes the threat model,
only one memory write instruction has been decoded. Amssumptions of our study and a taxonomy of attacks. In
unit that observes the output of the instruction decoder aBéction IV we describe our solution. Sectiod presents

TaHLIES MR, o orssia there has been signi cant work in this are@l]. Secure co-
SanmE K234+2045HL 2368 4568 IM2AL4ZME processors 48, 35 and Trusted Platform Modulesd] have
Sy, been used to secure the boot process. More recently, enabled
iy RO W22 A2 by VLSI advances, researchers have proposed continuous pro
S osiron tection of programs and on-chip methods for communication
sione L e with memory and 1/O integration2p, 40]. o
s jj:“&; i ~ A new threat that has recently seen a urry of activity is
HOBHOIGH+0# B (004 Fr0>"G 049064+ >H(#9308 intentional backdoors in hardware. As hardware developmen
oy SO closely resgmbles software development poth in. its_ global
scope and liberal use of third party IP, there is growingregge

. . and concern in hardware backdoors and their applications to
Fig. 2. Proposed work in the context of broader work on hardwa . . .
threats. Prior countermeasures against hardware threlgtsomea trusted CyPer offense and defense. Broadly speaking, work in thda ar
microprocessor which this work aims to provide. can fall into one of three categories: threats and count@rme
))) sures against malicious designers, threats and countsunesa
evaluation. We conclude and present directions for futufgyainst malicious design automation tools, and threats and
research in Sectioil. countermeasures against malicious foundries. There hes be
some work on detecting backdoors inserted by malicious
foundries that typically rely on side-channel informatisuch
Microprocessors are one part of a large ecosystem & power for detectionl1p, 16, 17, 24, 41, 54, 57, 70].
hardware parts that forms the trusted computing base. Th&ligere has been no work on providing countermeasures against
has been a signi cant amount of work over the past severalalicious designers, which this work aims to address.
decades on protecting different aspects of the ecosyst&m (F There have been a few uncon rmed incidents of design-level
ure 2). In this section, we discuss threats and countermeasunesdware attackslp] and some work in academia @reating
against all classes of hardware, not just microprocessors. hardware backdoors. Shangt al. [20] demonstrate how to
So far hardware, collectively the processor, memory, Nedxploit bugs in the hardware implementation of instruction
work Interface Cards, and other peripheral and commumwicatiKing et al. [36] propose a malicious circuit that can be
devices, has been primarily susceptible to two types otkdéta embedded inside a general-purpose CPU and can be leveraged
(1) non-invasive side-channel attacks g@jl invasive attacks by attack software executing on the same system to launch
through external untrusted interfaces/devices. We de ne a variety of attacks. They demonstrate a number of such
attack as any human action that intentionally causes haedwhybrid software/hardware attacks, which operate at a much
to deviate from its expected functionality. higher abstraction level than would generally be possibita w
Physical side-channel attacks compromise systems by caphardware-only attack. Although they do not discuss any
turing information about program execution by analyzing enprotection or detection techniques, their work is partciyl
anations such as electromagnetic radiatiéd, B3, 42, 47, 53] illuminating in demonstrating the feasibility and ease wd-c
or acoustic signals1b, 44, 60] which occur naturally as ating such attacks through concrete constructs.
a byproduct of computation. These attacks are an instance
of covert channels39 and were initially used to launch
attacks against cryptographic algorithms and artifactel(s A malicious hardware designer has to be strategic in cre-
as “tamper-proof” smartcards4§|[37]) but general-purpose ating backdoors because processor development, especiall
processors are also pregnable to such attacks. There hawmmercial development, is a carefully controlled process
been several attacks that exploit weaknesses in cadhesHroadly speaking, the attacker has to follow two steps:, rst
8, 19, 21, 48, 49, 50, 51, 51, 52 and branch predic- design a backdoor for an attack, and second, build a trigwer f
tion [6, 7, 9]. Some countermeasures against these threths attack. Just like regular design, the attacker has tdl@an
include self-destructing keysS2, 35, 62, 72] and new circuit trade-offs regarding degrees of deception, time to corigplet
styles that consume the same operational power irrespectieri cation complexity, and programmability. In this semt
of input values 27, 38, 58, 64, 65 and microarchitectural we discuss these tradeoffs for attack triggers (SedtiioB)
techniques 11, 22, 63, 66, 69]. and attack backdoors (SectidifrC). However, we begin our
Invasive untrusted device attacks typically are carrietl odiscussion by detailing assumptions in our threat model.
by knowledgeable insiders who have physical access to ERe
device. These insiders may be able to change the con guratio’
of the hardware causing system malfunction. Examples df suc Assumption #1: Division of WorKypically, a microproces-
attacks include changing the boot ROM, RAM, Disk or moreor team is organized into sub-teams, and each sub-team is
generally external devices to boot a compromised OS witbsponsible for a portion of the desigad.,fetch unit or load-
backdoors or stealing cryptographic keys using unprotectstore unit). Microprocessor design is a highly cooperadind
JTAG ports [L3][56]. A countermeasure is to store data irstructured activity with tens to hundreds of participaritd].
encrypted form in untrusted (hardware) entities. Since®s The latest Intel Atom Processor, for instance, is reported t

II. RELATED WORK

Ill. THREAT MODEL

Assumptions

have had 205 “Functional Unit Blocks™3[; a design of a using digital input signals), so these two strategies oresom
recent System-on-Chip product from ST Microelectronics mombination of them are the only ones possible.
reported to have required over 200 engineers hierarchicall Trigger #1: Cheat Codes (CCA malicious designer can
organized into eight unitsl]. We assume thaany sub-unit ;se 5 sequence of uncommon bits, embedded in either the
team in a design can be adversarial but that not more than gRgryction or data stream to unlock/lock the backdoor. For
of the sub-units can be simultaneously compromised. Whilesiance, a store instruction to a speci ¢ address and aicert
adversarial nation-states could possibly buy out complejg),e (one pairing in 2128 space for a 64-bit microprocessor)
teams to create undetectable malicious designs, it is M&, pe used as a key to unlock a backdoor. Since the search
likely that attackers will be a small number of “bad apples."Space is so large, the chance that this trigger is hit by rando
Assumption #2: Acceskhe focus of this work is to detect veri cation is negligible. King et al. describe a variant of
the handiwork of malicious microprocessor designers, Whichis attack in which a sequence of instructions in a program
includes chip architects, microarchitects, RTL enginestd unlocks a trigger. The CC method gives an attacker a very high
veri ers, and circuit designers. These workers have apgiovdegree of control on the backdoor but may require a reaspnabl
access to the design, privilege to change the design, andsaphisticated state machine to unlock the backdoor. Fuiithe
intricate knowledge of the microprocessor design process aequires execution of software that may not be possible due
its workings. A malicious designer will be able to provisionio access restrictions. This is due to the fact that in order t
for the backdoor either during the speci cation phasey., ensure the ‘magic' instruction(s) is issued, the attackestm
by allocating “reserved bits” for unnecessary functions, @xecute a program containing that instruction(s). If thacker
by changing the RTL. We assume this will be unnoticedannot obtain access privileges, then this will not be fssi

during the implementation p_hase and after the_ cod_e reVieWSTrigger #2: Ticking Timebomb (TTAn attacker can build
are complete. Our assumption that code audits will not Beirc it to turn on the backdoor after the machine has been

able to catch all backdoors is justi ed because audits ate rﬁbwered on for a certain number of cycles. The TT method is
successful at catching all inadvertent, non-maliciousigifes very simple to implement in terms of hardware; for instarece,

bugs. simple 40-bit counter that increments once per processekcl

Assumption #3: Extent of Chang@he malicious designer cycle can be used to open a backdoor after roughly 18 minutes
is able to insert a backdoor: (i) using only low tens of bitsf uptime at 1 GHz. Unlike the CC method, TT triggers do not
of storage (latches/ ops etc.) (ii) with a very small numbefequire any special software to open the backdoor. However,
of logic gates and (jii) without cycle level re-pipelininghis |ike CC triggers, TT triggers can easily escape detectioindu

assumption does not restrict the types of attacks allowed-H design validation because random tests are typically matdp
ever, we assume the attacker is clever enough to implemei¥n millions of cycles.

the changes in this way. This assumption ensures that the ma-
licious designer can slip in the hardware backdoor unndtice
past traditional audit methods with very high probability. - Backdoor Types

Assumption #4: Triggeralthough an unintentional bug can While the space of possible attacks is limited only by the
have the same consequences as a malicious backdoor, alcrititacker's creativity and access to the design, attacksbean
difference is that unlike a bug, a backdoor may not be alwaggoadly classi ed into two categories, based on their meti
active. If the backdoor is always active, there is a high ceancharacteristics. We observe that an attacker can eithatecre
of detection during random, unit-level design testing. Yoid a hardware backdoor to do more (or less) work than the
detection, the malicious designer is likely to carefullyntol uncompromised design would, or he/she can create a backdoor
when the backdoor is triggered. to do the same amount of work (but work that is different

Assumption #5: ROM3Ne assume that ROMs writtenfrom that of an uncompromised unit). By work, we mean
during the microprocessor design phase contain correat bhat the microarchitectural sub-operations or communicatibas
particular, we assume that microcoded information is @drremust be carried out for the execution of an instruction. This
The reason for this assumption is that the data in ROMs iga complete, binary classi cation.

Statica”y determined and not altered by the prOCESSGﬂ'B%St Emitter Backdoors (EB)A\n emitter backdoor in a mi-
For this reason, we consider this security issue to be bet¢@parchitectural unit explicitly sends a different numtr
solved statically than at runtime. microarchitectural communication than an uncompromised
unit. An example of an emitter backdoor in a memory unit
is one that sends out loads or stores to a shadow address.
An RTL level attacker can use two general strategies fd¥hen this type of attack is triggered, each memory instragtio
triggering an attack: a time-based trigger or a data-basepgon accessing the cache subunit, sends out two or more
trigger. From the RTL perspective, input data and the passagicroarchitectural transactions to downstream memorysuni
of time are the only factors determining the state of the the hierarchy. Similar attacks can also be orchestrated f
microprocessor (any attack using environmental factorslavo southbridge (I/O control hub) components, such as DMA
be a side-channel attack; we are concerned with attacksd VGA controllers, or other third party IP, to exltrate

B. Attack Triggers

4

con dential data to unauthorized locations. the attack. Corrupter attacks also scale poorly with dalapa

Corrupter Backdoors (CB)in this type of attack, the Sizes, since they require decoding of user instructionshén
attacker changes the results of a microarchitectural tipara case of multi-stage decoders, the backdoor itself may requi
without directly changing the number of microarchitecturdatches and execute over multiple cycles.
transactions. We consider two types of corrupter backdoorsT0 summarize, the “biggest bang for the buck” for the
— control Corrupters and data Corrupters_ attacker is from ticking—timebomb—emitter attacks. ThQﬂC

A control corrupter backdoor alters the type or semanti®¢ implemented with very little logic, are not dependent on
of an instruction in ight in a way that changes the number gfoftware or instruction sequences, and can run to completio
microarchitectural transactions somewhere else on-ehip,(Unnoticed by users. In the following section, however, we
at a later cycle). These attacks are similar to emitter kstacdiscuss strategies for defending against all types of hzmied
except that instead of simply issuing an extra instructibey ~and triggers.
use some part of a legitimate instruction in order to change
the number of transactions happening on-chip. For example,
if a decode unit translates a no op instruction into a storeWe propose as a solution to the untrusted designer prob-
instruction, this will indirectly cause the cache unit to déem an on-chip monitoring system that recognizes malicious
more work than it would in an untampered microprocessdrehavior at runtime, regardless of the trigger or unit. &iff
However, this change will not manifest itself until a latgcle. ent attacks require different defenses. As such, we present
This is different from an emitter attack because the deco@er solution in four avors. We rst describe low overhead
unit does not insert any new transactions directly; it desodsolutions for emitter and control corrupter protectionllezh
exactly the same number of instructions in the tampered ahdusTNET and DATAWATcH. We then describe how a form
untampered case, but the value it outputs in the tampered cab partial duplication, which we call “smart duplicationarc
causes the cache unit to do more work a few cycles later. be used against some data corrupters. For data corrupters no

Data corrupter backdoors alter only the data being usedfrotected by any of the above mechanisms, we recommend
microarchitectural transactions, without in any way attgr full duplication. For this initial study, we discuss our stbns
the number of events happening on-chip during the life of tt the context of simple microprocessors that do not re4orde
instruction. Examples of this could include changing thizea instructions.
being written to a register le or changing the address on a) .
store request. For instance, an instruction might be noaigty A. Emitter Backdoor Protection
decoded to turn an addition into a subtraction, causing theEmitter backdoors by de nition cause more (or less) mi-
ALU to produce a difference value instead of a sum vafue.croarchitectural transactions to occur in the corrupted un

Emitter vs. Corrupter Trade-off§rom the attacker's point than the instruction species. We designed tmeusTNeT
of view, emitter attacks are easy to implement. Emitterckta monitoring system to watch the microarchitectural tratieas
such as shadow loads, have very low area and logic requié-€ach unit and catch this class of attacks. Conceptually,
ments. They also have the nice property (for the attackdh System detects violations of deterministic commurocat
that a user may not see any symptoms of hardware emittpéariants between on-chip units, which are violated byttmni
when using applications. This is because they can preseRackdoors. - _ o _
the original instruction stream. Often in prior work therer ~ Toward this end, we designed the prediction/reaction mon-
“backdoor' actually means “emitter backdoor. itor triangle, depicted in Figure. A triangle consists of
Corrupter attacks, on the other hand, are more complicatégee different on-chip units - a predictor, a reactor, and a
to design and harder to hide from the user. In fact, a contf@get (monitored unit in Figur8). The predictor unit sends
corrupter attack requires strictly more logic than a simildnessages to the monitor, predicting events that should come
emitter attack because rather then simply sending a trigiger©ut of the target unit. If the reactor does not receive a ptedi
must hide the trigger within a live instruction (which invek
extra multiplexing or something equivalent). In these cksa H0A(4% (020030
rather than simply emitting bogus signals, the user's own 9*530##~ &-*04#056-8H#E0(*0-+7 fifiolﬁ;#:‘
instructions are altered to invoke the attack. Since the'suse (&% (PeAfF0AR (o8-

instructions are being altered, the attacker must have somi

knowledge of the binaries being run to change the data withou ‘

tipping off the user. If the execution of the backdoor caused 9 >

the user's program to crash, this would violate the secrdcy o Predictor 7~ Reactor

Unit Unit

4Data corrupter backdoors can be used to change program cnvexample . e .\\ z=” e

by changing a value in a register, thus changing the resuitfafure “branch- !’)#55%‘%(~0>703"% 0’ Monitored el =0>+703 %0/

if-equal’ instruction. However, each individual instrigst will still do the .35*536/‘«?#.0/205? 20'(0'# Unit .#&#ﬁ;#.'f)(s 591(?2' (1c

same amount of work as it should. The extra work will not occutilun ~ O1(%'(#$03%% HO1(% (#$03"%

the corrupt instruction has been committed. Thus each ingiruconsidered
individually will appear to be doing the correct amount of wor

IV. PRINCIPLES FORMICROPROCESSOHRPROTECTION

Fig. 3. Overview of theTRUSTNET and DATAWATCH monitoring
scheme.

5

event, or if the reactor receives an event that was never TABLE |
dicted. th th itor th | COMPARISON OFTRUSTNET, DATAWATCH , AND SMART
pre Icte 1 en . e moni OI': rOWS_ an alarm. . DUPLICATION FOR SIMPLE, IN-ORDER MICROPROCESSORS
The target unit is any unit on-chip. For one example, using

. . . ““Attribute TRUSTNET | DATAWATCH | Smart Duplic.
Figure 4 as refergnce, cpn5|der the decode unit (IDU) asraata — Corrupter No No Yes
target. The predictor unit can be any unit that sees event3etection
before they reach the decode unit, for example the fetch unfgontrol Corrupter No Yes Yes
IFU). The fetch unit sees every instruction before it resch petection
(’ . y . . Emitter Detection Yes Yes Yes
the decode unit. The reactor unit can be any unit that se&Sise Positives No No No
events after they pass through the target. For example| fitalls Processor No No Possibly
can be the execution unit (EXU), because that unit alwa/%ﬁaéﬁgsérafc Negligible Inl(_:(r);vases Moderate
receives information about instructions after they passutth —&f-chip memory No effect
the decode unit. The monitor itself can reside anywhere gnBackdoor source Can be identi ed

chip. The IFU knows each cycle whether or not it has fetched a
new instruction. The EXU knows at each cycle whether or not) _
a valid instruction is advancing through the pipeline. Hayi slices) are passed to monitors that check for eq_uwglerme. F_
these two sources of knowledge corroborate prevents fEMPple, in the case of the decoder, a two bit signature is
IDU from ever inserting bogus instructions into the pipelin €0ugh to de ne whether an instruction involves a load, a
Nothing extra has to be computed, since this knowledge §ire, both, or neither (two bits for four cases). An eqyalit
already represented by signals in the respective units. _check on the signatures from _the pre_dlctor and the reactor
A vital aspect of this design is that the target unit never corf® €nough to conrm an on-chip invariant, namely that the
municates with the monitor. Therefore, even if the desigrier NUmPer of each type of regular memory operation that enters
unit X knows the design of the monitor (which is likely), the¢he IDU equals the number of each type of memory operation
designer is unable to corrupt the monitor of X. For this reasothat exit the IDU. This prevents, for instance, an attack tha
it is important that the monitor of X should not be physicallyX ltrates data by converting no ops into store instruction
part of unit X. Data corrupter attacks change only the data that is sent in
Recall the assumption from Sectio that only one sub- ©on-chip communications. These backdoors are fundamgntall
team is corrupt, and so an attacker cannot corrupt two iifferent from the types previously discussed because the
dependent units on-chip. This assumption guarantees tinat @mounts and types of communications between units during
system is secure against the attack space. Consider théeomoriiie execution of an instruction is identical to that of a eotly
set up to watch some unit X. There are four items in p|ayfunctioning Chlp The monitor triangle, while very ef ciefor
the predictor of X, which we will call P; the reactor to X,recognizing amounts and types of transactions, does ndt wor
which we will call R; X itself: and the monitor of X, which Well for this case, because data corrupter attacks canmache
we will call M. The attacker must choose one and only orfegnized without duplicating some of the computational d¢ogi
of these items to corrupt. In order to cause a con dentialifpat has been corrupted. For example, if the EXU (execution
or integrity attack in X, the attacker would have to choose ##it) produces an incorrect sum, the fact that the sum is grron
corrupt X itself. However, in that case P, R, and M are afiannot be known without duplicating (or otherwise perfargi
untampered with, and the attack is caught at runtime by tHe job of) the ALU (arithmetic/logic unit).
P-R-M monitor. The attacker could instead tamper with P or R However, this type of attack has some similarities with
(but not both), but in either case that attack would be caughansient errors that can occur in microprocessors. Signif
at runtime, since P and R would disagree with each oth&ant work has been done toward transient error detec-
The last choice is to corrupt M to cause an availability &taction [25][55][71][23] and fault tolerance, and we draw on
However, since M contains only one (or a few) logic gates it the principles of some of this prior work. It is suf cient in
too small to contain a cheat code or ticking time bomb. M hasany cases to duplicate select computational logic in cialer
so few states (usually none) and input bits (usually two} tharotect the RTL design, since standard memory structeregs (
it can easily be veri ed statically by exhaustive enumemati RAMS) are not susceptible to RTL level attacks. We propose
. that this type of minimal duplication, which we call “smart
B. Control Corrupter Backdoor Protection duplication,” can be used in a case-by-case way to protect
Recall that control corrupters change the semantics of-an any units é.g.,memory control unit) that are not covered by
struction in ight. The same predictor/reactor schemeduge the DATAWATCH system or any units that may be considered
catch emitter attacks, works to detect control corruptxcés, vulnerable to data corrupter attacks. This partial dupbce
since these attacks either cause reactions (microartnigédéc allows for protection against data corrupter attacks. Hane
transactions) that are not predicted or prevent trangactitat it does this at the possible cost of processor stalls anc extr
are predicted. To this end, we presemraWaTcH, the natural area, and as explained previously(Sé&eC), in most domains
extension ofTRUSTNET. DATAWATCH uses the same triangledata corrupter attacks would likely be considered infdasib
scheme ag rRusTNET. However, instead of transmitting indi- due to the requisite of knowing the binaries that will be run
vidual bits to monitors, signature®.(., hashes, parity bits, in the future during the RTL design phase. Therefore, this

! comes out of the IFU if and only if an instruction was fetched
g from the I-Cache. This invariant catches any attack wherein

I-TLB j—’l&'—»l&l—»@—» EXU |-

@ o o Jo] o | oo the IFU sneaks instructions into the stream that did not come
' from the I-Cache. The monitor operates on the level of single
instructions as opposed to whole cache lines. While the whole

line is loaded into the I-Cache from the L2, the I-Cache knows
when individual instructions are being fetched into the IFU
_Fig. 4 Units and communication in the hypothetical inordexggssor used #3 LSU: The load-store unit (LSU) handles memory refer-
in this study. ences between the SPARC core, the L1 data cache and the L2
cache. Predicted by the IDU and reacted to by the D-Cache,
technique may only be useful in a few select domains or n%}'s monl.tor conrms gach cycle t'hat a memory act|oln (load
at all or store) is requested if and only if a memory instruction was
i . . fgd into the LSU. This catches shadow load or shadow store
Table | summarizes some of the attributes of the offere . : . .
. : attacks in the LSU. Our microprocessor uses write merging,
solutions. None of the proposed solutions have a pmblev%ich could have been a problem. since several incomin
with false positives (false alarms) because they use iantsi Write requests are meraed inFt)o 2 sin ' le outaoing write regue 9
that can be easily determined statically in non-specwdativ d 9 9 going ety

in-order microprocessors. Extending this solution to giesi However, there IS St".l a .S'g.nal each cycle'statmg whgther 0
t a load/store is being initiated, so even if several wrége

with advanced speculative techniques, such as prefetchlﬂ L)
o . - : rged over several cycles, there is still a signal eachecycl
may make false positive avoidance non-trivial. False regst L
for the monitoring system.

(missed attacks) are only a problem if multiple signals in _ _
the DATAWATCH technique are hashed to save space, becausé’® -Cache: Predicted by the IFU and reacted to by

two different values may hash to the same key, thus trickig® uni ed L2 Cache, this conrms each cycle that an L2

the equality checker. However, hashing is an implemematiB“Str“Ction load request is received in the L2 Cache if argl on

option, which we chose to avoid because the space requiteni&f1at l0ad corresponds to a fetch that missed in the I-Cache
of the baselineDATAWATCH system is fairly low. The IFU can predict this because it receives an “invalidhalg

from the I-Cache on a miss. An I-Cache miss immediately
C. A Case Study triggers an L2 request and stalls the IFU, so there is no issue
To demonstrate the principles of th&rusTNeT and with cache line size. The IFU buffers this prediction untiét

DATAWATCH techniques we describe how they can be app"éaactloq is recewgd from the L2 Cache. This catches shadow
to a hypothetical non-speculative, in-order microprooess Struction loads in the I-Cache.
The in-order microprocessor used in this study closely mod-#2 D-Cache:Predicted by the LSU and reacted to by the
els the cores and cache hierarchy of the OpenSPARC k3 Cache, this is the same as the monitor #4 but watches data
microprocessor with the exception of the cross bar netwofRduests instead of instruction requests.
between core and memory system, the thread switching unit#6 L2 Cache:Predicted by the I-Cache and reacted to by
and the chip system units such as the clock and test unMU, this is the same as monitor #4 but is one level higher
For this study, the units in the processor core are parétionin the cache hierarchy.
as described in the OpenSPARC T2 documentation and we#7 L2 Cache:Predicted by the D-Cache and reacted to by
used the open source RTL code to identify the predictotise MMU, this is the same as monitor #5 but is one level
and reactors for each unit. The following are theusTNET higher in the cache hierarchy.
monitoring triangles we implemented, categorized by thié un #8 D-Cache:Predicted by the LSU and reacted to by the
being monitored: L2 Cache, this is the same as monitor #5 but watches writes

#1 IDU: The primary responsibility of the IDU is to decodenstead of reads. It is necessary that two separate monitors
instructions. Predicted by the IFU and reacted to by the EXWatch reads and writes; if a single monitor counted only
the IDU monitor con rms each cycle that a valid instructiorthe total number of reads and writes, then an attacker could
comes out of the IDU if and only if a valid instruction enteredonvert a write into a read unnoticed. This would cause old
the IDU. This monitor detects any attack wherein the IDWdata to be loaded into the cache and prevent the new value
inserts spurious instructions into the stream. In the cdse foom being written.
branch and jump instructions, which do not go all the way #9 L2 Cache:Predicted by the D-Cache and I-Cache and
through the pipeline, the information travels far enougttfie reacted to by the MMU, this con rms that line accesses in
EXU to know that a branch or jump is occurring. This monitothe MMU correspond to line accesses issued by the level 1
can be extended to support a speculative microprocesdue if taches. This monitor prevents shadow loads/stores exkcute
monitor can reliably identify speculative instructions. by the L2 Cache.

#2 IFU: The primary responsibility of the IFU is to fetch The following are theDatTaWaTcH monitoring triangles we
instructions. Predicted by the I-Cache and reacted to by tii@plemented, categorized by the unit being monitored:
IDU, this monitor con rms each cycle that a valid instruetio #10 IFU: Predicted by the IDU and reacted to by the I-

2HI)H(+#,) 1&,2$0%" D. Microarchitecture and Optimizations

0,
—> oy f S Y% The microarchitecture of the predictor and monitor units ar
-, <> \4’4& depicted in Figu_res. Thg predictor unit consists of_ 0] e_/ent_
"'#$%&'<(")*(_+# I"$0 buﬁer; for delaylng the issue of tokens to the monitor aid (i
PR ' token issue logic to determine when buffered events can be
45'65) released from the event buffers. The predictor unit reguére
small buffer because it is possible for multiple predictidn
IHI%E (") (+#) happen before a reaction happens, and these predictioris mus
/0."1 be remembered for that duration. These buffers can be sized
v — > a priori to avoid over ows. The monitor itself simply checks
Y, Y RSH (9 gaegzngcallgpear on the predictor and reactor inputs duhiag t
1) TrRusTNET Optimization: When designing th& rusT-
Fig. 5. TRUSTNET Monitor Microachitecture. NET System to catch emitter backdoors, we considered it to be

important that the monitors t simply into the pipeline witht
any complex timing or buffering issues.

Cache, this con rms each cycle that if the I-Cache receives Since predictions and reactions must arrive at the monitor
a valid PC value it is the same as the value computed in tfgring the same cycle, timing must be controlled in the fece o
IFU. This required some duplication of PC logic but did nofon-determinism, which arises in all microprocessors due t

require any extra storage. This prevents attacks wherein fifiche misses, etc. We handled this differently in the case of
IFU maliciously changes the control ow. the memory hierarchy and in the case of the pipeline. The

pipeline offers a natural lock-step manner for coordir@tin

#11 Data TLB:Predicted by the checker data TLB anavents. If a reaction stage N pipeline steps down from
reacted to by the LSU, this con rms each cycle that the ospus prediction stage, then the prediction stage has a Nize
of the data TLB match the outputs of the checker data TLBuffer that advances only when that stage of the pipeline
This prevents data TLB attacks, such as permissions wolgti advances. Since the monitoring network advances in logi-st
or page mis-translation. This is on the borderline of what wgith pipelined events, timing is not a problem. For examiile,
would start to call “smart duplication' because the “sigres’ the third pipeline stage wants to send a prediction to a rpnit
are so large. However, we included this is dTAWATCH that lies in the fth pipeline stage, this will take two pipes
implementation and simulation. advancements (no need for forwarding). If the third staghsst
. for any reason, the prediction also stalls and gets buffered
'&ﬂ%hen the data from the third stage reaches the fth stage,
. . e prediction token will also arrive. Of course, the prédit
#11 but for the instruction TLB rather than the data TLB. token should not pass through the fourth stage but should

#13 IDU: Predicted by the IFU and reacted to by thénstead remain in the prediction buffer, with a bit denoting
LSU, this con rms that the number of instructions decodetat it is semantically in the fourth stage.
into memory operations matches the number of memoryln the case of the cache hierarchy, on the other hand, it
instructions fetched. For our microprocessor, this rezgithat iS necessary to know which predictions correspond to which
the IFU looked at a few bits of the instruction. The monitgrinreactions, because it is possible for memory requests to be
occurs at a one cycle lag, so the timing on the critical path fi@ndled out of order. This requires time-stamping of packet
unaffected. The IFU stores a few of the bits from the fetchd@r example with a one byte local time signature copied from
instruction in ip- ops until the next cycle, when a predion an 8-bit modular counter.
can be made with a few logical gates. For our case study, thi®2) DaTaAWATCcH Optimization: A nave solution for catching
is the only type of control corrupter decoder attack we asklre control corrupter backdoors in TLBs (translation lookasid
The reason for this is that in our simple microprocessor, theiffers) is to simply have two (or more) designers design the
only types of signals the decoder can cause are loads irsst@ame TLB and compare their outputs each cycle. Since TLBs
(if, for example, the decoder changed an add to a subtraeind to be power-hungry, highly associative structureglidu
this would be a data corrupter, because it would not alter thation is not a good idea. Instead of complete duplicatiom, w
number of transactions in the execution unit, just the value propose a new TLB microarchitecture that provides signitca
the output). In more complex microprocessors, decode uniotection without the costs associated with duplicatibne
may be responsible for more types of transactions and migfitBs contain page translation and permissions informatian
require additional monitoring triangles. When customiziang available elsewhere on chip. A TLB consists of a CAM that
DATAWATCH system to t a particular design, it is important uptranslates a virtual page into a physical page, which is then
front to identify what types of signals each unit is respblesi stored in a table (RAM) with the corresponding permissions
for. information for that physical page.

The basic idea of our method is to create a “checker” direpeci cation is formalized for veri ability p]. All common
mapped structure that has the same functionality as a TleB, #olutions to this problem appear unsatisfactory in the exdnt
motivation being that a direct-mapped structure uses didrac of microprocessors.
of the power of an associative one. The TLBs in our case studyAnother option is to use static veri cation to identify
are fully associative. We added functionality to the CAMs tbackdoors. There has been extensive prior work on static
output the line number of the output. This allowed us to baildveri cation of RTL level designs §8][18][34]. Static veri -
checker TLB that uses these line numbers. Essentiallyganst cation involves con rming functional equivalence betwean
of having one CAM and a direct-mapped RAM (as is normalpehavioral level golden modek(g.,a C program) and the
we have one CAM and two direct-mapped RAMs that operaTL level design under test. The dif culty lies in the fact
in parallel. The CAM provides matching entries to both RAM¢hat the input space for a microprocessor grows expongntial
in parallel. One of those RAMs communicates with the rest @fith the number of input interfaces and the internal state,si
the chip while the other RAM only gives outputs to a monitowhich makes the functional domain catastrophically large.
(equality veri er). The equality check occurs at a one cycl&xhaustive comparison is unrealistic, so the state of thésar
latency, so the values are buffered for that cycle. to use probabilistic approaches that attempt to obtainoreas

Naturally, the CAM could be tampered with so that it sendable coverage, such as equivalence checksf $8], model
incorrect line numbers to the checker TLB. This would causecking B0], and theorem proving30]. These approaches
the equality check to fail because data from one line of tlkmn work for small units, particularly ones with little or
original TLB's RAM will be compared to data from a differentno state, such as ALUs. Unfortunately, static veri catian i
line of the second RAM, causing an alarm to be throwmncreasingly becoming the bottleneck in the microprocesso
Therefore, our checker TLB turns a potential con dentialit design process3p] and is becoming less reliabl@][
or integrity attack into at worst an availability attack. \iVete A fundamental weakness of static veri cation techniques
that this availability attack would also be easy to catch athen it comes to backdoor detection is that they attempt to
veri cation time because the passing of the line number isse a stationary weapon to hit a moving target. Static msthod
simple, combinatorial logic that can be checked by exhegistichoose speci ¢ targets for comparison or invariants to con
enumeration. about small portions of the design. Since it is reasonable to

While this duplication is much more expensive than thassume that a malicious insider would have full knowledge of
simpler monitor used for emitter backdoor protection, it ithe static veri cation technique being used, he or she would
much less expensive than complete duplication and offarost likely design the backdoor to avoid the space covered by

strong protection for a highly vulnerable unit. these techniques. For example, he or she would likely make
o]] sure not to violate any of the theorems being veri ed and to
E. Applications of Prior Solutions avoid regions being formally checked for equivalence.

As we mentioned brie y in the introduction, the problem
of building trusted systems from untrustworthy components V. EVALUATION
is a classic problem that has received some attention in thelhe goals of our evaluation were to: (1) study the accuracy
systems community. A common solution used to amplify trugnd coverage provided byRUSTNET and DATAWATCH, (2)
in corruptible processes is to use the-version model of measure the increases in on-chip network congestion from
computation. The basic idea is to hale entities perform DATAWATCH running on real programs and (3) measure the
the same computation and compare fheoutputs to check area overheads of both mechanisms. We do not discuss per-
for untrustworthy behavior. In this section, we expand am tformance since the proposed mechanisms do not stall the
different ways in which this concept can be applied to micr@ipeline, memory system, or any other on-chip unit, and
processors and discuss the advantanges and disadvantageggcurity packets travel on a dedicated network.

To deal with untrusted designers in the context of m

croprocessors, one option is to haMe designers creat®l , i C .
versions of each unit within a processor, which would all This section addresses the general applicability anddimit

be run continuously to check for untrustworthy behaviofiONS Of our solution, including related aspects and paént
Alternately, one could run a program oh different systems €Xtensions.

that implement the same ISA but are manufactured by differen Scope of our solutiorOur implementation off RUSTNET
vendors, say, boards that have x86 processors from AM®)dDATAWATCH was designed for a simple, in-order micro-
Intel and Centaur. The latter suffers from high power ovache Processor. While the methodology is applicable to any ireord
while the former suffers from both high design cost pehicroprocessor, this exact implementation only works fa t
chip and high runtime costs. Another solution that avoid®icroprocessor in our case study. In order toTRUSTNET
only the runtime cost is to statically and formally check thendDATAWATCH to other designs, it is necessary to analyze the
design units fronN designers for equivalence. This approacHnits at a high level and determine what the natural predicto
increases the design cost and does not scale to large desfjith reactors are. In future work, we hope to develop a tool
or designs that are vastly different. According to the 200hat automates this process.

ITRS roadmap, only 13.8% of a normal microprocessor designLevel of our solutiorOur solution is at the RTL level and

5, Applicability

thus can only catch attacks that operate on the RTL levet- Pos EXPERIMEN‘-I!-:\LBILI\IFI:IIRIASTRUCTURE
RTL, circuit level attacks, such as tampering with the \gdta

. . Instruction Set | Sun SPARC
thresholds on certain transistors, would not be caught by ou Nicroarchitecture

system. Our solution covers the cores and the cache higrarch instruction sup-| 16KB, 8-way IR/IW L1 I cache, 64-entry FA

of the OpenSPARC T2 microprocessor but does not cover ply I-TLB (both 2-cycle access, 52 cycles on TLB

debug/test logic or miscellanies, such as clock distriuti p;fgl)utgg branch prediction, stall until brangh

Additionally, side-channel attacks are also not covered. Execution Single issue, 1 INT ALU, T2 SPARC register
. . . windows.

Multiple attackersThe solution we implemented wor!<s only Data supply 8KB. 4-way [1 D cache TRW, T28-entry FA
ynder the assumption t_hat at most one of the design teams DTLB (both 3 cycle access, 53 cycles on TLB
is corrupt. Our design is a triangle (complete graph of size miss, write-back policy), uni ed 4 MB, 16-way
three). If we remove the assumption that only one of the desig L2 cache, 1 RW (both 12 cycle access, write-

. . back policy), Unlimited main memory at 250
subteams is corrupt ar_1d allow faor different s_ubteams to be cycle access latency.
corrupt and fully coordinated, then the solution must be €om | Pipeline Stages| Fetch, Cache, Pick, Decode, Execute, Repd,
more complicated. Bypass, Writeback.
. Benchmarks bzip2, gcc, mcf, gobmk, hmmer, test inputs,
In order for aTRUSTNET system to catchh coordinated base compiler optimizations, SPARC compildr

attackers, it is necessary to form a complete graph of size
n + 2. The premise of the system is that two honest units _)

must communicate with each other to compare informatidkpys 0 generalize th&rusTNET and DaTaAWATCH architec-

and detect discrepancies. If there are at mest nodes ana turé, and each way poses challenges for future work. The
have been tampered with, then at most one of them is hondBtlti-threaded case is a relatively simple generalizattuat

and the one honest node receives only invalid informatiof2n be implemented by making the packetsvide for an
Therefore, the size of the graph must be at least2 so n-threaded_ core. Assumlng one thread is not supposed to
that there are at least two honest nodes. If the graph is Q€T the microarchitectural transactions of anotheratirehe
complete, i.e. it is missing an edge, then it is possible thafi-Wide packet can function semantically asindependent
the missing edge connects the only two honest nodes. In tA}nitors. The out-of-order case is more complicated as it
case, the two honest nodes receive only invalid informatiofduires our mechanisms to be extended to handle reorder-
Therefore, the graph must be complete. Since complete grafitg of in-ight predictor/reactor tokens. Handling speative
contain 2* pidirectional edges, th&rusTNET solution, techniques would also require extensions, though we leeliev
when extended to attackers for a microprocessor with that the principles of our system can be applied to work ig thi

units, has a fundamental communication overhead(of + €2Se without any false alarms by identifying what the lifedi
1)u/ n2u. of an instruction is (whether it is prefetched, speculated o

The conclusion is that even thouglirusTNET and committed) and monitoring it for that lifetime. There arbet
DATAWATCH are generalizable for multiple, coordinated grddvanced features of modern microprocessors, and each may

tacking subteams, they do not scale well. We present gf@rrant its own a:]tennon n f.lljturedwork. For gxample, i;])me
generalized scheme only for completeness. microprocessors have a privileged or supervisor stateishat

separate from the permissions governed by the TLB. Such

Ale_lrmsThe decision of how to handle an alarm is dpmfmgdditions would open the door for control corrupter attacks
specic and not a fundamental aspect of our monitoring, 4 \ould warrant additional monitoring triangles.
system. However, we present initial suggestive thoughts on

what might be done with an alarm. In our experimentd. Evaluation Methodology

implementation, the a_llarm was simply recorded and not usec\Ne demonstrate our design on a simpli ed model of Sun
for any corrective actions. Microsystems' OpenSPARC T2 microarchitecture. We chose
The simplest response to an alarm is to kill the defectivgis architecture and instantiation because it is the only
processor, which turns a con dentiality or integrity akento «jnqustrial-strength” hardware design that is also avadaas
an availability attack. In highly secure domains, this maypen source. While our experiments and analysis were per-
be desirable to guarantee no ex ltration of sensitive datgyrmed on our simulated core, based on the OpenSPARC T2
Additionally, in a heterogeneous processor (diversity)isg, mjicroprocessor design, we use nothing unique to that design
it may be desirable to kill the defective core. We also not thang we believe our techniques can in principle be applied to
using theTRUSTNET and DATAWATCH infrastructure has the 5y microprocessor that has memory hierarchy and pipelines
potential to greatly simplify the task of making micropreee |n our case study, we used the RTL hardware implementation
sors tamper corrective. If an alarm is sounded, the probm q1) to construct well-formed, meaningful attacks to test th
be corrected by rolling back to the last committed instartti regjliency of the system and (2) to systematically deteemin
Additionally, the instruction that was in ight in the comed the number of on-chip units that can be covered by our design.
unit can be agged as a cheat code and logged for futufg addition, to measure congestion, similar to many compute
execution. This approach would be analogous to a honeypgichitecture studies, we use a cycle-accurate simulattr th
Extensions to General Microprocessofsiere are several exactly models one core of our microprocessor. The details

10

of our simulation infrastructure are summarized in Talble Similarly, we beleive that the crossbar in our case study is
We implemented all th&rRusTNET and DATAWATCH monitor simple enough to be amenable to formal veri cation. We are
triangles discussed in this paper (Tablgs V) including the not sure if our strategy can cover the miscellaneous logit su
partially duplicated TLBs. as power management unit and the stream processing unit (we
have not had time to understand the implementation) buethes
units have very little contact with other units on chip (less
To determine how goo@RUSTNET andDATAWATCH are at than 0.1 normalized), and we believe it is unlikely that they
protecting against attacks on microprocessors, we rstnewill signi cantly increase attack vulnerability. The di€ulty
to measure the microprocessor attack/vulnerability sp@ice with covering the MCU withTrusTNET is that the MCU
measure the attack/vulnerability space, we observe that @mmunicates with only the main memory and that there is
on-chip unit is only vulnerable to backdoors in-so-far @s inothing on-chip that can serve as a reactor. The simplestavay
interfaces are threatened. What goes on inside the unit doe$mndle this special case would be to duplicate the MCU cbntro
matter so long as everything that goes in and out of it is cbrrelogic, which serves the same purpose as complete duplicatio
If all inputs and outputs are the same as in an uncorruptedt without increasing memory bandwidth.
chip, then there is no problem, because there has been no .
corruption or ex ltration of data. Therefore, to identifjne D. Attacks and Detection
points of vulnerability, we record the interfaces between o Based on our study of the OpenSPARC T2 RTL, we con-
chip units. The efcacy of our solution is then determine@tructed the emitter and control corrupter attacks desdrib
by whether or not these interfaces are protected from attadi@bleV and injected the attacks into our simulator to measure
using TRUSTNETand DATAWATCH. the percentage of false negatives and false positives. /e di
Figure 6 (A,B,C,D) shows the distribution of shared in-not implement the data corrupter attacks. These attacks, su
terfaces between units within the overall chip, the prooess2s the one which alters the address of an otherwise valid load
core, the memory elements and system elements respectiv@l§ Situations where some logic duplication may be required
in the RTL implementation of the OpenSPARC T2. Each this case, the address (or a hash of the address) could be
measurement in the grid represents the number of signals tiggwarded to make sure it has not been altered. However, this
enter and leave a unit within the processor. All communizati Was not done in our implementation, which protected only
is normalized to the unit that has the highest communicatiotgainst emitter and control corrupter attacks. As statelteea
Very small bars (below 0.1) signify connections that are n¥te also did not take any corrective or rollback measures with
part of instruction processing, but rather contain misecelbus alarms; we only recorded them.
information, such as power settings, clock distributiotg e As was expected, all emitter and control corrupter attacks
(attacks on these may be possible at fabricatien,, mis- Were caught in all cases. This is very important because it
clocking a certain unit, but would be diffcult at the RTL codélemonstrates that our system provides coverage for alleof th
level). Most of these miscellaneous signals are not presentunits we applied it to and for various types of attacks. We
our case study. Thus, the microprocessor in our case studyli§o measured the overall accuracy of our solution with no
somewhat simpler than a real OpenSPARC T2 and lacks sofitacks, as measured by the percentage of the cycles in which
of the less central features, such as power management Higfe are no false positives thrown. For all tests run, neefal
oating point operations. positives occurred. It is vital that there are no false [eesst
As can be seen from Tabl#is and 1V, that describe known and no false negatives because the latter would be a breach
emitter and corrupter monitors respectively, and Figére Of security and the former would cripple the system.
that describes all the interfaces, that all of the units ia tPE_ Traf
core that have signi cant communications (more than 0.8) ar L
monitored by TRusTNET and DATAWATCH. For this study, S'nCETBUS_TNET and DATAWAT(_:H do not stall the pipeline
we used manual analysis to identify which signals on Y otherwise increase com_putatmnd cycles,_ the most aatev
interfaces can be altered to cause emitter and control ey COSt Of the system is the increase in on-chip network traf c.
attacks to verify thaffRusTNET and DATAWATCH can cover This Increase depends on the archltecture., but it can be
these signals. Based on this analysis, most of the vulresrabl 20unded in general if we assume a cache hierarchy and one
terfaces can be protected against the known attacks. Howe@ MOre pipelined computational units. The total amount of

our manual analysis may have failed to exhaust all possitiféf ¢ in the worst case is bounded above as per the following

attack scenarios; in future work, we hope to automate tHfguation:
process to guarantee full coverage. trafc 2 (MemoryOps MemoryMonitors
While TRUSTNET anq DATAWATCI-.I cover thg processor + Instructions PipelineMonitory
cores and the cache hierarchy against the emitter and tontro
corrupter attacks we identi ed, we did not cover the oat- The factor of two comes from the fact that each monitoring
ing point logic, memory controller units, crossbars and thevent consists of two packets - a prediction and a reaction.
miscellaneous logic. We believe that formal veri cationncaThis is a loose upper bound, and we expect real programs
be used to cover oating point logic as is already in vogudo produce far less than this much traf c. However, this uppe

C. Attack Space Coverage

11

TABLE Il

DESCRIPTIONS OF THE EMITTER PROTECTION MONITORS FOR OUR IMEMENTATION

[Monitored Unit | Predictor | Reactor | Invariant | Example of attack thwarted
IDU IFU EXU # of instructions in = # of instructions out IDU stalls the fetch unit and sends ma-
licious commands to the EXU
IFU I-Cache IDU # of instructions in = # of instructions out IFU sends spurious instructions to the
IDU
LSU IDU D-Cache | # of Memory ops issued = # of Memory opsLSU performs shadow loads
performed
I-Cache IFU L2 Cache | # of requested L2 instructions = # of IFU requestd-Cache returns spurious instructions to
that miss IFU while waiting on the L2 Cache
L2 Cache I-Cache MMU # of requested instructions from memory = # pfL2 Cache returns spurious instructions
I-Cache requests that miss in L2 while waiting on main memory
D-Cache LSU L2 Cache | # of requested L2 data = # of LSU requests thaD-Cache returns fake data while waiting
miss on the L2 Cache
L2 Cache D-Cache MMU # of requested data from memory = # of D-Cachd.2 Cache returns spurious data while
requests that miss in L2 waiting on main memory
D-Cache LSuU L2 Cache| # of L2 cache lines written = # of LSU line writes D-Cache sends write to L2 cache un-
issued prompted
L2 Cache D-Cache MMU # of Memory lines written = # of D-Cache ling L2 sends write to memory unprompted
writes issued
Legend: IDU = decode unit, IFU = fetch unit, LSU = load/storgtul-Cache = instruction cache, D-Cache = data cache, Lch€& uni ed L2 cache

TABLE IV
CORRUPTER PROTECTION MONITORS

Monitored Unit Predictor Reactor | Invariant Example of attack | Type of signature
thwarted
IFU IDU I-Cache | PC received = PC computed IFU branches incorrectly | Eight bit signature
D-TLB Checker D-TLB LSU TLB output = checker TLB output TLB violates permissions | Full permissions and
translation
I-TLB Checker I-TLB IFU TLB output = checker TLB output TLB violates permissions | Full permissions and
translation
IDU IFU LSU Memory ops issued = memory ops per-Decoder causes shadofv Two bit signature
formed load/store
Legend: IFU = fetch unit, IDU = decode unit, TLB = translatitmokaside buffer, LSU = load/store unit, I-Cache = instimictcache

bound demonstrates our design's scalability. This linealisg F. Area Estimates
with the IPC and the pipeline depth is optimal (up to constant
factors) given that we want to monitor every pipeline stage
and every instruction. In this section, we provide bounds on the general area cost
of TRUSTNET and DATAWATcH and estimate the cost of the
implementation in our case study. We use bytes of storage as
our metric because the computational logic required isatriv
We experimentally measured how much monitoring netwogl oRs, buffer logic, or equality check over a few bits).
traf c is generated by real programs with two questions in]
mind: (1) Are there programs that create oods of trafc (nea 1n€ area cost of our monitors comes from the fact that an
the worst-case bound)? (2) Do high-level differences betwe€Vent must be stored by the monitoring system from the time
programs affect the amount of traf ¢ caused by our monitordpréaches the predictor to the time it reaches the reaator. |
Our expectation was that the different programs would hag@MPlex processors, this time can be variable. It is necgssa
little impact on the amount of traf ¢ produced by the monior {0 have buffers large enough to store all events that are stil
As Figure7 shows, the differences between programs do ncomplete. This number depends on the architecture but is

signi cantly impact the EPC (events per cycle) of our system
Figure 7 displays the number of communications per cycle
sent betweemRUSTNET monitors during executions of SPEC
integer benchmarks. These numbers are deterministic becau
the monitors behave deterministically and the instructiare

in order. The traf c generated is relatively low (always des
than 2 per cycle). It is also stable across the benchmarks
(between 1.1 and 1.2). This supports our belief that a single
model works for all programs and that program adaptive
features would be unnecessary. These numbers would be
higher for a program that, for example, consisted of only

store instructions or only branch instructions, but we db ng, 2 Event | wed by RUSTNET o "
. . ig. 7. vents per cycle created by monitoring scheme
anticipate such behavior in real programs. for SPEC benchmarks. An event is any communication between bachip

units. A prediction and a reaction count as two separatetgeven

12

A Communication between SPARC basic partitions B Communication between SPARC core units GKT
Load/Store Gasket

PKU
Thread Pick Unit
08

06 IFU_CMU
Fetch/Cache Mgmt

Unit

0.4

0.2

EXU
Execution Unit

Normalized number of shared messages
Normalized number of shared messages

(="

AVAWA):

Load/Store Unit

!
System i omu \“’
u > mmu
Core Sp;;m“ - su ™Y SPU
Crossbar Crossbar decfgu 4 .
Memory Y Stream Processing
System mmu aktPRYT Unit
Communication between SPARC system units PMU
C D Communication betwesrf SPARC memory units Power Management
Unit
g !
2
2 08.
: FGU .)
gos Floating Point/
E 04 Graphics Unit
£
S0z
=
g LSU
E
2

Ethemet

TLU
Thread Logic Unit

Normalized number of shared messages

Misc_Chip_IO
n2_l2d_sp_512kb_cust

Debugger ncu

MMU
ncu
Cl_RsLGH n2_|2d_sp_512kb_cust Memory
o mcu R
rop onte! Management Unit

Trap_Control

Ck Rst Gen
Debugger
Misc_Chip_IO

Ethernet

Fig. 6. An overview of the communications that occur in a reab@BPARC T2 microprocessor. (A) displays a partition of theragimocessor into four
basic parts: 'System' includes interfaces, clock genesatand other system level features. '"Memory' cache banks;cacheable units, and other memory
structures. The core represents one processor core (tferdght cores in all). The crossbar coordinates communitatietween the cores and the cache
banks (which are partitioned on chip). (B), (C), and (D) shoternal communications going on within the system, memory, ardsc

known a priori for a given microprocessor. Therefore: DATAWATCH, as described in Tablg/, employs four addi-
tional triangles on top offRUSTNET. The two triangles for

BufferPackets MaxMemoryRequests the pipeline use eight-wide prediction buffers of one byte
+ MaxInstructionsInPipeline signatures, for a total of eight bytes each. If we create\le t

triangles on all eight cores, that makeés 8 8 = 128 total

.In the_ _single—i;sue, in order case, each packgt i.s a Si”%&ﬁes of storage. Including the duplicate direct-mappe@gL
bit. Additionally, if there areN threads sharing a pipeline, the(both data and instruction) adds a total 18 + 64 = 192

data must beN bits wide instead of one, so that no threadEiuplicated TLB entries. If we do this for each of the eight

swapping attacks are possible. So in general: cores and give each line a generous 9 bytes of storage, this
adds8 9 192 =13824bytes of storage. TheDATAWATCH

uses a total ofl28 + 13824 = 13952bytes of storage on top

of TRUSTNET, for a total 0f13952 +576 = 14528bytes, or a
Speci cally, TRUSTNET as described in Tablgl, employs little under 15 KB of storage (total for 8 cores and the cache

nine different triangles. It is sufcient to use a one bytdierarchy).
prediction buffer for each triangle at the input (although i

most cases less would suf ce). Analysis of an OpenSPARC

T2 core shows that it is impossible for a one byte prediction One of the long-standing classic problems in systems se-
buffer (eight slots) to over ow. This makes a total of at mosturity is “How to build trustworthysystemsfrom untrust-
nine bytes of storage. Using maximal scalirg, conservative worthy components?” In this paper we study and propose
scaling with no microarchitectural optimizations, woule- r a solution for a variant of the problem: “How to build
quire9 8 =72 bytes to cover an eight-threaded OpenSPARustworthy microprocessordrom untrustworthy components
T2 core. An OpenSPARC T2 chip, which contains eighuilt by untrusted designers?” Since all software and hardw
cores, would require eight copies @RRusTNET for a total is under the control of microprocessors, establishingt tius

of 72 8 =576 hytes of storage. microprocessors is a critical requirement for establighmist

Area (MaxMemoryRequests
+ MaxInstructionsinPipeline PacketSize

VI. CONCLUSION

13

TABLE V
SOME HYPOTHETICAL ATTACKS ON AN INORDER MICROARCHITECTURE THESE ATTACKS WERE CONCEIVED BY MANUAL ANALYSIS OF THE
OPENSPARC T2 RTL (NSPIRED BY [36]) AND IMPLEMENTED IN A SIMULATOR TO TEST OUR DESIGNS THIS ARRAY OF ATTACKS THREATENS EVERY
PIPELINE STAGE AS WELL AS THE MEMORY SYSTEM THESE ATTACKS CAN VIOLATE CONFIDENTIALITY, INTEGRITY, AND AVAILABILITY . ONLY THE
EMITTER AND CONTROL CORRUPTER ATTACKS WERE IMPLEMENTED IN OR CASE STUDY THE DATA CORRUPTER ATTACKS ARE DISCUSSED IN THIS

PAPER AND PROVIDED HERE FOR REFERENCE BUT WERE NOT IMPLEMERD.

OpenSPARC| Attack Possible User Level Effect Backdoor Type Protection

Unit

IFU Fetch instruction from| Fetch a malicious program instead of the one the OS intendSontrol Corrupter | #10
wrong address

IFU Fetch extra instructions Fetch a malicious program in addition to the one the O&mitter #2

intends

IDU Emit spurious instructions | Emit a spurious load or store to private information Emitter #1

IDU Transform no-op into load of Allow inappropriate load or store Control Corrupter | #13
store

ITLB Translate pages incorrectly| Translate a valid load into a load from a malicious programControl Corrupter | #12

ITLB Change or Ignore permist Allow loading from pages without permissions Control Corrupter | #12
sions

IL1 Loads wrong instruction Fetch a malicious program instead of the one the OS intend@ata Corrupter duplic

IL1 Loads extra instruction Fetch a malicious program in addition to the one the OD&mitter #4

intends

EXU Incorrect operation ALU produces incorrect output; Widespread damage Data Corrupter verif, V-C

EXU Incorrect operation Compute wrong address Data Corrupter verif. V-C

LSU Loads/Stores extra data Load/store private information Emitter #3

DL1 Loads extra data Load private information Emitter #5#8

DL1 Loads from wrong location| Load private information Data Corrupter duplic.
in UL2

DL1 Stores extra data Ex ltrate private information Emitter #5#8

uL2 Loads extra data Load private information Emitter #6H#T#9

uL2 Loads from wrong location| Load private information Data Corrupter duplic.
in RAM

uL2 Loads/Stores extra data Overwrite OS critical information Emitter HOHTH#9

MC Loads/Stores extra data Overwrite OS critical information Emitter IV-A

DTLB Translates data location int Translate a valid load into a load of private information Control Corrupter | #11
correctly

DTLB Change permissions Allow loading from pages without permissions Control Corrupter | #11

DTLB Ignores permissions Allow loading from pages without permissions Control Corrupter | #11

in computing bases. up less than 1 KB of storage to catch emitter attacks. We
We classi ed the set of possible RTL level design attack®/SO determined thabDataWATcH can protect the cores and
into three categories and explained the trade-offs betwaeh the cache hierarchy from known emitter and control cornupte
of the categories. We proposed as a solution to the untrus@dticks at the cost of less than 2 KB of storage per processor
microprocessor designer problefRusTNET, a dynamic ver- core. Lastly, we discussed how logic in the rest of the design
i cation engine that continuously monitors communicasoncan be duplicated in order to provide more robust coverage
to detect violations of deterministic communication ineats for high security domains at a fraction of the cost of comeplet
between on-chip unitsSTrRusTNET keeps track of microarchi- duplication (the current state of practice).

tectural events required to execute an instruction andrtepo The ideas behind rRusTNET viz. using the causal structure

a discrepancy when a microarchitectural unit does more @ microarchitectural operations in concert with the divis

less work than is expected. We also propose a more robagwork between processor units, opens up exciting opportu-
system,DATAWATCH, Which watches not only the amount ofnities to optimize over traditional techniques used to iovpr
events that happen but also the type of events that happe@iability and availability of microprocessors. For iaste,
Within these two systems, each unit within a processor TRUSTNET and DATAWATCH like infrastructure may be used
monitored by two other units, a predictor unit and reactadt. unto detect transient faults and for dynamic veri cation vath

The predictor unit supplies inputs to the actor unit and tiac traditional duplication or diversity based techniques.

unit receives outputs from the actor. By tracking preditsio
and reactionsTRUSTNET and DATAWATCH detect malicious
modi cations to a chip.

TRUSTNET and DATAWATcCH are capable of detecting ma- We thank Edward Suh and anonymous reviewers for
jor categories of microprocessor attacks without completeeir detailed comments. We also thank Sal Stolfo and
replication (a classic textbook solution for such probl)3m§ne';”berS of the tseéiulflty,b_ achm_actur% afnd colmpglter
at_ low design comple_xity, for a small area investment, ang esd%rgc?k gcr’(r)]ur)thic’;\ Woorlzm 'II'?]is c\ll\éerLSI)\/Nasor Sl]/gplcj)?teg
with no performance impact. Based on our evaluation of t an instrumentation grant from AFOSR. (FA
OpenSPARC T2 RTL, we determined thakusTNET takes 99500910389)

VIlI. ACKNOWLEDGEMENTS

14

(1]
(2]
(3]

(4]
(5]

(6]

(7]

(8]

El

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]
[20]

[21]

REFERENCES

Intel's Silverthorne Unveiled: Detailing Baby Centrindnttp://
www.anandtech.com/showdoc.aspx?i=3230&p=4
International Technology Roadmap for Semiconductors 2007
Edition: Design.

Latest from DAC: ST and Media Tek manage media So(23]
designs (part 2). http://www.edn.com/blog/1690000169/post/
290028029.html

Trusted Computing Group.
trustedcomputinggroup.org2007.
0. Aciicmez. Yet Another MicroArchitectural Attack: Exploit-

ing I-cache. InProceedings of thel® Computer Security
Architecture Workshop (CSAW)ages 11-18, November 2007. [25]
O. Aciicmez, S. Gueron, and J. P. Seifert. New Branch
Prediction Vulnerabilities in OpenSSL and Necessary Software
Countermeasures. Cryptology ePrint Archive, Report 2007/039,
February 2007. [26]
O. Aciicmez, C. K. Koc, and J. P. Sefert. On the Power of
Simple Branch Prediction Analysis. Proceedings of the ACM
Symposium on Information, Computer and Communications
Security (ASIACCS)pages 312—-320, March 2007. [27]
0. Aciicmez, C. K. Koc, and J. P. Seifert. Predicting Secret Keys
via Branch Prediction. IProceedings of the RSA Conference —
Cryptographers Track (CT-RSApages 225-242, March 2007.

0. Aciicmez, W. Schindler, and C. K. Koc. Cache Base{8]
Remote Timing Attack on the AES. IRroceedings of the RSA
Conference — Cryptographers Track (CT-RS#8ges 271-286,
March 2007.

S. Adee. The hunt for the kill switchEEE Spectrum Magazine
45(5):34-39, 2008.

G. Agosta, L. Breveglieri, I. Koren, G. Pelosi, and M. Sykora.
Countermeasures Against Branch Target Buffer Attacks. [80]
Proceedings of the4™ Workshop on Fault Diagnosis and
Tolerance in Cryprography (FDTCR007.

D. Agrawal, S. Baktir, D. Karakoyunlu, P. Rohatgi, and31]
B. Sunar. Trojan detection using ic ngerprinting. Becurity

and Privacy, 2007. SP '07. IEEE Symposium pages 296—
310, May 2007.

F. Altschuler and B. Zoppis. Embedded system security. Janug8p]
2008.

D. P. Appenzeller. Formal veri cation of a powerpc micropro-
cessor. InICCD '95: Proceedings of the 1995 International
Conference on Computer Desigpage 79, Washington, DC, [33]
USA, 1995. IEEE Computer Society.

D. Asonov and R. Agrawal. Keyboard Acoustic Emanations.
In Proceedings of the IEEE Symposium on Security & Privacy
pages 3-11, May 2004. [34]
M. Banga, M. Chandrasekar, L. Fang, and M. S. Hsiao. Guided
test generation for isolation and detection of embedded trojans
in ics. In GLSVLSI '08: Proceedings of the 18th ACM Grea{35]
Lakes symposium on VLSbages 363—-366, New York, NY, [36]
USA, 2008. ACM.

M. Banga and M. Hsiao. A region based approach for the iden-

ti cation of hardware trojans. IrHardware-Oriented Security

and Trust, 2008. HOST 2008. IEEE International Workshop ofB37]
pages 40-47, June 2008.

J. Baumgartner, H. Mony, V. Paruthi, R. Kanzelman, anfB88]
G. Janssen. Scalable sequential equivalence checking across
arbitrary design transformations. @omputer Design, 2006.
ICCD 2006. International Conference ppages 259-266, Oct. [39]
2006.

D. J. Bernstein. Cache-timing Attacks on AES, 2005.

E. Biham, Y. Carmeli, and A. Shamir. Bug attacks GRYPTQ
pages 221-240, 2008.

J. Bonneau and |. Mironov. Cache-Collision Timing Attacks
against AES. IrProceedings of th&" International Workshop

[22]

Online athttps://www. [24]

[29]

[40]

15

on Cryptographic Hardware and Embedded Systems (CHES)
pages 201-215, 2006.

E. Brickell, G. Graunke, M. Neve, and J. P. Seifert. Software
Mitigations to Hedge AES Against Cache-based software side
channel vulnerabilities. IACR ePrint Archive, Report 2006/052,
February 2006.

J. Carretero, P. Chaparro, X. Vera, J. Abella, and A. Gz
End-to-end register data- ow continuous self-tes8IGARCH
Comput. Archit. News37(3):105-115, 2009.

R. Chakraborty, S. Paul, and S. Bhunia. On-demand trans-
parency for improving hardware trojan detectability. In
Hardware-Oriented Security and Trust, 2008. HOST 2008.
IEEE International Workshop qrpages 48-50, June 2008.

S. Chatterjee, C. Weaver, and T. Austin. Efcient checker
processor design. IMICRO 33: Proceedings of the 33rd an-
nual ACM/IEEE international symposium on Microarchitecture
pages 87-97, New York, NY, USA, 2000. ACM.

R. P. Colwell. The Pentium Chronicles: The People, Passion,
and Politics Behind Intel's Landmark Chips (Software Engi-
neering "Best Practices”) Wiley-IEEE Computer Society Pr,
2005.

J. Coron. Resistance against Differential Power Analysis for
Elliptic Curve Cryptosystems. In C. K. Koc and C. Paar, editors,
Proceedings of thé® Cryptographic Hardware and Embedded
Systemspages 292-302, August 1999.

J. Dyer, M. Lindemann, R. Perez, R. Sailer, L. van Doorn, and
S. Smith. Building the ibm 4758 secure coproces€mmputey
34(10):57-66, Oct 2001.

R. Elbaz, D. Champagne, C. Gebotys, R. B. Lee, N. Potlapally,
and L. Torres. Hardware mechanisms for memory authentica-
tion: A survey of existing techniques and engines. pages 1-22,
20009.

F. Ferrandi, F. Fummi, G. Pravadelli, and D. Sciuto. Identi-
cation of design errors through functional testingeliability,
IEEE Transactions on52(4):400-412, Dec. 2003.

K. Gandol, C. Mourtel, and F. Olivier. Electromagnetic
Analysis: Concrete Results. Proceedings 08¢ International
Workshop on Cryptographic Hardware and Embedded Systems
(CHES) pages 251-261, 2001.

B. Gassend, D. Clarke, M. van Dijk, and S. Devadas. Silicon
physical random functions. I1ACM Conference on Computer
and Communications Securjtpages 148-160, New York, NY,
USA, 2002. ACM Press.

T. Harada, H. Sasaki, and Y. Kami. Investigation on radiated
emission characteristics of multilayer printed circuits boards.
IEICE Transactions on Communicatign€80-B(11):1645—
1651, 1997.

Y. Huang, R. Guo, W.-T. Cheng, and J. C.-M. Li. Survey of
scan chain diagnosis|EEE Design and Test of Computers
25(3):240-248, 2008.

IBM. IBM 4764 PCI-X Cryptographic Coprocessor.

S. T. King, J. Tucek, A. Cozzie, C. Grier, W. Jiang, and
Y. Zhou. Designing and Implementing Malicious Hardware.
In Proceedings of thd® USENIX Workshop on Large-scale
Exploits and Emergent Threat8pril 2008.

P. Kocher, J. Jaffe, and B. Jun. Differential power analysis.
pages 388-397. Springer-Verlag, 1999.

0. Kbmmerling and M. G. Kuhn. Design Principles for Tamper-
Resistant Smartcard ProcessorsPhceedings of the USENIX
Workshop on Smartcard Technologages 9-20, May 1999.

B. W. Lampson. A Note on the Con nement Problef@om-
munications of the ACM16(10), 1973.

J. W. Lee, D. Lim, B. Gassend, G. E. Suh, M. van Dijk, and
S. Devadas. A technique to build a secret key in integrated
circuits for identi cation and authentication application. In
Proceedings of the Symposium on VLSI Cirguitages 176—
159, 2004.

[41]

[42]

[43]

[44]
[45]
[46]

[47]

[48]

[49]

[50]

[51]

[52]
[53]

[54]

[55]

[56]

[57]

[58]

[59]

J. Li and J. Lach. At-speed delay characterization for if50]
authentication and trojan horse detectionHerdware-Oriented
Security and Trust, 2008. HOST 2008. IEEE International
Workshop onpages 8-14, June 2008. [61]
S. Mangard. Exploiting radiated emissions - EM attacks on
cryptographic ICs. IrfProceedings of AustroChif2003. [62]
S. Mangard, E. Oswald, and T. PopPower analysis attacks:
Revealing the secrets of smart car@pringer-Verlag, Secaucus,

NJ, USA, 2007.

V. Marchetti and J. MarksThe CIA and the Cult of Intelligence [63]
Knopf, 1974.

J. Markoff. Old Trick Threatens the Newest Weapomhstp://
www.nytimes.com/2009/10/27/science/27trojan.htird2 /.

G. McFarland Microprocessor DesignMcGraw-Hill, Inc., New
York, NY, USA, 2006.

E. D. Mulder, P. Buysschaert, S. B. Ors, P. Delmotte, B. Piignee
G. Vandenbosch, and I. Verbauwhede. Electromagnetic Ang5]
ysis Attack on an FPGA Implementation of an Elliptic Curve
Cryptosystem. IfProceedings of EUROCQNNovember 2005.

M. Neve, J. P. Sefert, and Z. Wang. A Rened Look at
Bernstein's AES Side-channel Analysis. Broceedings of the [66]
ACM Symposium on Information, Computer and Communica-
tions Security (ASIACCsSpage 369, March 2006.

M. Neve and J. P. Seifert. Advances on Access-driven Cache
Attacks on AES. InProceedings of Selected Areas of Cryptog[67]
raphy (SAC) 2006.

D. Osvik, A. Shamir, and E. Tromer. Cache attacks an@8]
Countermeasures: the Case of AES. Cryptology ePrint Archive,
Report 2005/271, 2005.

D. A. Osvik, A. Shamir, and E. Tromer. Other People's Cache:
Hyper Attacks on HyperThreaded Processors. Presentati6G®]
available athttp://www.wisdom.weizmann.iltromer/

C. Percival. Cache Missing for Fun and Pro tttp://www.
daemonology.net/papers/htt.pdf

J. J. Quisquater and D. Samyde. Electromagnetic analysis
(EMA): Measures and counter-measures for smart cards. [f0]
Proceedings of the International Conference on Smart Cards:
Smart Card Programming and Security (E-smapages 200—
210, 2001.

R. M. Rad, X. Wang, M. Tehranipoor, and J. Plusquellic. Powgr1]
supply signal calibration techniques for improving detection
resolution to hardware trojans. ICCAD '08: Proceedings of

the 2008 IEEE/ACM International Conference on Computef72]
Aided Design pages 632—-639, Piscataway, NJ, USA, 2008.
IEEE Press.

S. K. Reinhardt and S. S. Mukherjee. Transient fault detection
via simultaneous multithreading. ISCA '00: Proceedings of

the 27th annual international symposium on Computer archi-
tecture pages 25-36, New York, NY, USA, 2000. ACM.

K. Rosenfeld and R. Karri. Attacks and defenses for jtag.
Design & Test of Computers, IEER7(1):36—-47, Jan.-Feb.
2010.

H. Salmani, M. Tehranipoor, and J. Plusquellic. New design
strategy for improving hardware trojan detection and reducing
trojan activation time. Indardware-Oriented Security and Trust,
2009. HOST '09. IEEE International Workshop,quages 66—

73, July 2009.

H. Saputra, N. Vijaykrishnan, M. Kandemir, M. Irwin,

R. Brooks, S. Kim, and W. Zhang. Masking the Energy
Behavior of DES Encryption. IrProceedings of the Design
Automation and Test in Europe Conference (DATZ)03.

S. R. Sarangi, A. Tiwari, and J. Torrellas. Phoenix: Detecting
and recovering from permanent processor design bugs with
programmable hardware. IMICRO 39: Proceedings of the
39th Annual IEEE/ACM International Symposium on Microar-
chitecture pages 26-37, Washington, DC, USA, 2006. IEEE
Computer Society.

[64]

16

A. Shamir and E. Tromer. Acoustic cryptanalysis: On nosy
people and noisy machinesttp://people.csail.mit.edu/tromer/
acoustic/

S. Smith. Magic boxes and boots: Security in hardwEE=E
Computer 37(10):106—109, 2004.

G. E. Suh and S. Devadas. Physical unclonable functions for
device authentication and secret key generation. D&sign
Automation Conferencepages 9-14, New York, NY, USA,
2007. ACM Press.

K. Tiri, O. Aciicmez, M. Neve, and F. Andersen. An Analytical
Model for Time-Driven Cache Attacks. IRroceedings of the
Fast Software Encryption Workshop (FSE)arch 2007.

K. Tiri and I. Verbauwhede. A VLSI Design Flow for Secure
Side-Channel Attack Resistant ICs. DATE '05: Proceedings

of the conference on Design, Automation and Test in Europe
pages 58-63, March 2005.

K. Tiri and I. Verbauwhede. Design Method for Constant Power
Consumption of Differential Logic Circuits. IRroceedings of
Design, Automation and Test in Europe Conference (DATE)
pages 628-633, March 2005.

K. Tiri and I. Verbauwhede. A Digital Design Flow for Secure
Integrated Circuits. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems (TCAT®Y(7):1197—
1208, July 2006.

United Stated Department of DefenseHigh performance
microchip supply February 2005.

S. Vasudevan, V. Viswanath, J. A. Abraham, and J. Tu. Seque
tial equivalence checking between system level and rtl descrip-
tions. Design Automation for Embedded Systetti®d(4):377—
396, 2008.

I. Verbauwhede, K. Tiri, D. Hwang, A. Hodjat, and P. Schau-
mont. Circuits and Design Techniques for Secure ICs Resistant
to Side-Channel Attacks. IRroceedings of the International
Conference on IC Design & Technology (ICICDPrges 1-4,
May 2006.

X. Wang, M. Tehranipoor, and J. Plusquellic. Detecting mali-
cious inclusions in secure hardware: Challenges and solutions.
In Hardware-Oriented Security and Trust, 2008. HOST 2008.
IEEE International Workshop qrpages 15-19, June 2008.

J. Yoo and M. Franklin. Hierarchical veri cation for increasing
performance in reliable processorsl. Electron. Test.24(1-
3):117-128, 2008.

M.-D. M. Yu and S. Devadas. Secure and robust error ctime

for physical unclonable function®esign & Test of Computers,
IEEE, 27(1):48-65, Jan.-Feb. 2010.

	Introduction
	Related Work
	Threat Model
	Assumptions
	Attack Triggers
	Backdoor Types

	Principles for Microprocessor Protection
	Emitter Backdoor Protection
	Control Corrupter Backdoor Protection
	A Case Study
	Microarchitecture and Optimizations
	TrustNet Optimization
	DataWatchOptimization

	Applications of Prior Solutions

	Evaluation
	Applicability
	Evaluation Methodology
	Attack Space Coverage
	Attacks and Detection
	Traffic
	Area Estimates

	Conclusion

